31
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Mechanical Investigation of the Energetics of Butene Sorbed in H-Ferrierite

, &
Pages 175-196 | Received 01 Jan 1996, Accepted 01 Feb 1996, Published online: 23 Sep 2006
 

Abstract

The energetics and diffusion of the four butene isomers in a model of protonated ferrierite with Si/Al ratio of 8 is investigated using molecular mechanics, molecular dynamics, and a simple activated jump diffusion model, in order to determine the influence of the diffusion of the sorbent molecules onto the selectivity of ferrierite toward isobutene. Two main classes of adsorption sites are found, in the main 10-T channels and in cavities along 8-T channels. The magnitude of the self-diffusion coefficient mainly depends on the motions of the molecules in the 10-T channels, and it is found that isobutene diffuses more slowly than the linear isomers: at 623 K, D (isobutene) < 0.03 × 10−4 cm2/s, while D (trans-2-butene)  0.42 × 10−4 cm2/s. However, the sites in the 8-T cavities act as molecular traps for linear butenes and slow down their diffusion, while they do not influence the self-diffusion of isobutene. Therefore, the diffusion of isobutene is enhanced relative to the other isomers in ferrierite, as compared with other zeolites with only one type of channels. This might be a reason for the good selectivity of ferrierite toward isobutene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.