123
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

The Application of the Reaction-Field Method to the Calculation of Dielectric Constants

Pages 159-178 | Received 01 Feb 1997, Accepted 01 Feb 1997, Published online: 23 Sep 2006
 

Abstract

The behaviour of the popular TIP3P water model has been investigated using both molecular dynamics and Monte Carlo simulation procedures. Long-range electrostatic interactions were included through a reaction-field treatment, and the nonbonded interactions were either truncated at the cutoff distance, or smoothly scaled to zero using a switching function. The thermodynamic observables, and in particular the dipole-dipole correlation functions, are found to differ between the two simulation techniques if a rigid nonbonded cutoff is applied. However, use of a switching function gives exact agreement between the simulation methodologies. This difference is ascribed to the effect of energy pumping in the molecular dynamics simulations, and suggests that dielectric constants calculated using this simulation method with the fluctuation procedure in conjunction with a reaction field should be reappraised. Thus the Monte Carlo simulation procedure offers a number of intrinsic advantages over molecular dynamics for the calculation of dielectric constants with a reaction field. The most precise value for the dielectric constant of TIP3P is calculated to be 102 ± 3 at 298 K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.