80
Views
5
CrossRef citations to date
0
Altmetric
NEW METHODOLOGIES

Comparison of Near-Infrared Spectroscopy and Laser Doppler Flowmetry for Detecting Decreased Hepatic Inflow in the Porcine Liver

, , , &
Pages 268-274 | Received 26 Oct 2008, Accepted 05 Jan 2009, Published online: 09 Sep 2009
 

Abstract

Hepatic artery and portal vein thrombosis are devastating complications of partial liver transplantation. Early detection of inflow complications is important, as re-reconstruction can salvage the graft. Near-infrared spectroscopy or laser Doppler flowmetry can be used to detect tissue oxygenation or microcirculation on the liver surface. The aim of this study was to examine which of these two methods better detects changes in hepatic inflow. Sangen-strain pigs (n = 5) were used. The tips of the near-infrared spectroscopy and laser Doppler flowmetry probes were placed separately on the surface of the right liver. Inflow to the liver was controlled during the following seven conditions: control (not clamped), half- and totally clamped portal vein, half- and totally clamped hepatic artery, and half- and totally clamped portal vein and artery. Tissue blood flow was calculated using laser Doppler flowmetry. Oxyhemoglobin, deoxyhemoglobin, and the tissue oxygenation index were measured and calculated using a near-infrared spectroscopy system. The tissue blood flow and oxygenation index could not be used to differentiate between the half-clamped portal vein, half-clamped hepatic artery, and totally clamped portal vein conditions. The oxyhemoglobin minus deoxyhemoglobin value was significantly decreased after half or total clamping of the portal vein or hepatic artery (p <. 001 for each condition). The findings of the present study indicate that near-infrared spectroscopy was more sensitive than Doppler flowmetry for detecting changes in hepatic tissue inflow from the liver surface.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.