192
Views
24
CrossRef citations to date
0
Altmetric
Original Research

Reactive Oxygen Species Play a Biphasic Role in Brain Ischemia

, , , , &
Pages 97-102 | Received 26 Jun 2017, Accepted 01 Sep 2017, Published online: 08 Feb 2018
 

ABSTRACT

Objective: Reactive oxygen species (ROS) are the essential mechanism involving in the ischemic process. Due to their complex characteristics, the precise effects of ROS on post-ischemic neurons remain uncertain. This study aimed to investigate the potential role of ROS in brain ischemia. Methods: Dynamic ROS levels in the perifocal cortex were evaluated after right middle cerebral artery occlusion (MCAO) of SD rats. Furthermore the role of ROS was assessed following delayed treatment with the ROS scavenger dimethylthiourea (DMTU) after brain ischemia. Results: ROS levels markedly increased at 1 hr after reperfusion and then gradually decreased as the post-reperfusion time interval increased. ROS levels reached their lowest point at 3 days after reperfusion before increasing and showing a second peak at 7 days after reperfusion. ROS levels negatively correlated with neurological function scores. Delayed DMTU treatment after stroke worsened neurological outcomes, decreased microvessel density and inhibited stress-activated protein kinase activation. Conclusion: ROS may play a biphasic role in cerebral ischemia. Namely, ROS may induce damage during the injury phase of brain ischemia and participate in improving neurological function during the recovery phase.

Declaration of interest

No conflicts of interest were declared.

ACKNOWLEDGMENT

This work was supported by grants from Hebei Natural Science Foundation (H2014206139).

Additional information

Funding

Hebei Natural Science Foundation [H2014206139].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.