262
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Postconditioning Ozone Alleviates Ischemia-Reperfusion Injury and Enhances Flap Endurance in Rats

, , , , , , , & show all
Pages 15-24 | Received 11 Feb 2018, Accepted 03 May 2018, Published online: 19 Oct 2018
 

Abstract

Introduction: Muscle-flap transferring is a routine approach utilized in reconstructive operations; however, flap morbidity is often a source of post-operative difficulty. Ischemia-Reperfusion Injury (IRI) is an important contributor to the viability of flaps after transferring. The goal of this research was for assess the probable useful impacts of ozone on flap survival in a rat muscle-flap design. Materials and Methods: We examined the effects of postconditioning ozone administration on viability of pedicled composite flaps. Twenty-eight Wistar rats were randomized into four groups: sham-operated (S), ischemia-reperfusion (IR), sham-operated + ozone (O), IR + ozone (IR + O), respectively. The animals were sacrificed on the eighth day. In a general histological evaluation, flap tissues were examined with a light microscope, and apoptotic cells were counted. The Apoptotic Index (AI) was then calculated. Flap-tissue samples were sent for analyses of malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and protein carbonyl (PCO), and blood samples were sent for analyses of Total Oxidant Score (TOS), and Total Antioxidant Capacity (TAC). Data were evaluated statistically using the Kruskal–Wallis test. Results: The histomorphometric score was remarkably greater in O (p = .002). The AI was greater in IR (p = .002). The antioxidant parameters values as regards SOD, GSH-Px, CAT, and TAC were found to be greater in O (p < .005). The oxidant parameters values as regards MDA, PCO, TOS were found to be greater in IR (p < .005). Discussion: The current research indicates that ozone application can attenuate the muscle-flap injury brought about by IR through triggering the increase of the antioxidant capacity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.