Publication Cover
High Pressure Research
An International Journal
Volume 20, 2001 - Issue 1-6
28
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of photocatalytic active fibrous titania by the solvothermal reactions

, , &
Pages 121-130 | Received 10 Jan 2000, Accepted 25 Feb 2000, Published online: 19 Aug 2006
 

Abstract

Fibrous titania was synthesized by the solvothermal reactions of H1Ti4O9 nH2in different media. H2Ti4O9·nH2O transformed in steps to H2Ti8O17, monoclinic TiOz, anatase and rutile. The phase transformation temperature and microstructure of the products changed significantly depending on the heating environment. The critical temperature at which anatase appeared in liquid media was much lower than that in air. The titania fibers consisted of nanocrystals of TiO2. The crystallite size and crystallinity of titania decreased with decreasing the dielectric constant of the reaction medium. Consequently, the photocatalytic activity of titania changed with heat treatment media in the following sequence: ethanol, methanol > water > air, i.e., fibrous titania possessing excellent photocatalytic activity could be obtained by the solvothermal reactions using alcohol such as methanol and ethanol. Titania powders crystallized by the solvothermal reaction in methanol also possessed excellent thermal stability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.