86
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Raman spectroscopy of aqueous methanol solutions under pressure

, , , &
Pages 407-410 | Received 07 Jun 2006, Published online: 02 May 2007
 

Abstract

Recently, Dixit et al. (2002) used neutron diffraction to probe the molecular-scale structure of a concentrated methanol–water mixture (7:3 molar ratio) under ambient conditions. Their results suggest that the anomalous thermodynamics of water–alcohol systems arises from incomplete mixing at the molecular level, i.e. most of the water molecules exist as small hydrogen-bonded strings and clusters in a fluid of close-packed methyl groups. The application of high hydrostatic pressure together with Raman spectroscopy is a powerful technique to detect such structural changes in associated systems. In this work, we present measurements of Raman spectra of water–methanol mixtures under pressure at room temperature. We have used an anvil cell device with sapphire anvils to generate pressures up to 10 kbar. Our results allow us to suggest important changes on the cluster distribution as a function of pressure.

Acknowledgements

This work was supported by Comunidad Autónoma de Madrid under project GR/MAT/ 0358/2004. We also acknowledge additional support from Universidad Complutense de Madrid under project CM-UCM-910481.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.