Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 20, 2008 - Issue 6
1,007
Views
250
CrossRef citations to date
0
Altmetric
Research Article

Hazard and Risk Assessment of a Nanoparticulate Cerium Oxide-Based Diesel Fuel Additive—A Case Study

, , , , , , , , , , , & show all
Pages 547-566 | Received 03 Jan 2008, Accepted 14 Jan 2008, Published online: 06 Oct 2008
 

Abstract

Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO2), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems.

Notes

For details on the monitoring of airborne PM10 see the section on Exposure Assessment. The objective of the environmental monitoring was to identify any correlation between changes in oxidative activity with the chemical composition of ambient PM10 and in particular the influence (if any) of cerium content on any changes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.