Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue 10
36
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Temporal integration in nasal lateralization of homologous propionates

, , &
Pages 819-827 | Received 23 Jun 2008, Accepted 14 Oct 2008, Published online: 28 Apr 2009
 

Abstract

For nasal irritation from volatile chemicals, a version of Haber’s rule (k = CnT) can model the trade-off between concentration (C) and duration of exposure (T) to achieve a fixed sensory impact, e.g. threshold-level irritation or a fixed suprathreshold intensity. The term k is a constant. The exponent, n, represents how well the system integrates over time. An exponent of 1 indicates complete temporal integration: an x-fold increase in stimulus duration exactly compensates for cutting the concentration 1/x. An exponent greater than 1 indicates incomplete temporal integration: more than an x-fold increase in duration is needed. In a previous study of homologous alcohols, n varied systematically with number of methylene units: integration became more complete as the length of the carbon chain increased. To explore the generality of this finding, we tested homologous esters that differ in the number of methylene units: n-ethyl propionate, n-propyl propionate, and n-butyl propionate. Nasal lateralization was used to measure irritation thresholds. Human subjects received a fixed concentration of a single compound within each experimental session. Stimulus duration was varied to find the briefest stimulus that caused lateralizable irritation. Concentration and compound varied across sessions. Consistent with results with n-alcohols, integration became more complete as the number of methylene units increased. Lipid solubility varies with chain length; hence, solubility in the nasal mucosa may play a role in the dynamics of irritation. Further, preliminary analyses suggest that, for data pooled across both chemical series, n varies systematically with molecular parameters related to solubility and diffusion.

Declaration of interest: This work was supported in part by Kraft Foods through the Term Chair in Chemosensory Psychophysics at Monell (PMW), NIEHS grant 5R03ES013969 (PMW), and the Monell-Jefferson Chemosensory Clinical Research Center grant from NIDCD, 5P50DC006760, which supports the research of KZ. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.