Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 32, 2020 - Issue 6
512
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Transfer of metals in the liquids of electronic cigarettes

ORCID Icon, , ORCID Icon, , &
Pages 240-248 | Received 03 Jan 2020, Accepted 18 May 2020, Published online: 14 Jun 2020
 

Abstract

Objectives: E-cigarettes are electronic devices containing a liquid that usually consists of a mixture of glycerol, propylene glycol and nicotine, with or without flavorings, in various concentrations. A vapor or aerosol is produced, and inhaled from the user, when this liquid is heated by a heating coil. This work examines the impact of three parameters (e-liquid composition, nicotine content and air flow) on the transfer of metals' from the heating coils to the e-liquids.

Materials and methods: A distillation unit was used, where 20ml of an e-liquid were boiled with two commercial heating elements. Four e-liquids: 100% Propylene Glycol, 100% Glycerol, 50/50% Propylene Glycol/Glycerol, 33.3/33.3/33.3% Propylene Glycol/Glycerol/Water, three nicotine contents: 0, 0.4 and 0.8% per volume and three air flows: 0, 0.5 and 1.0 L/min, were used. The liquids were analyzed by Total Reflection X-Ray Fluorescence spectrometry to determine the final content of metals.

Results and discussion: Five metals, Fe, Ni, Cu, Zn, and Pb, were found to be transferred from the heating coils to the e-liquids. The transfer of those metals increases with air flow and nicotine concentration, while e-liquid composition also has a significant impact. Glycerol enhances the transfer of metals compared to propylene glycol and their mixtures. The boiling temperature of the e-liquids increases significantly the transfer of metals in the e-liquids.

Conclusions: There is a transfer of metals from the heating coils to the e-liquids. This transfer depends on the e-liquid composition and on the boiling temperature.

Disclosure statement

The authors acknowledge having no financial interest or benefit arisen from the direct applications of this work.

Additional information

Funding

This work was supported by the Hellenic Thoracic Society (no Grant number).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.