Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 34, 2022 - Issue 7-8
203
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Liver transcriptome analysis reveals biological pathways and transcription factors in response to high ammonia exposure

, , , &
Pages 219-229 | Received 01 Feb 2022, Accepted 23 May 2022, Published online: 01 Jun 2022
 

Abstract

Aim: Ammonia is a toxic gas that not only causes environmental pollution, but also is harmful to human health after inhalation. Liver is an important detoxification organ that can convert external or metabolized toxic substances into nontoxic substances. However, the toxic effects of ammonia exposure on livers have not been well studied.

Method: In this study, pigs were used as an animal model and were exposed to 80 ppm ammonia (8 h during 12 days), and then, RNA-seq were conducted to explore the key genes in response to high ammonia exposure in livers.

Result: Gene set enrichment analysis (GSEA) showed that the genes associated with hypoxia, inflammatory response, and apoptosis were up-regulated in the ammonia group, but the genes associated with DNA replication, linoleic acid metabolism, and glycolysis were down-regulated. Totally, 556 differentially expressed genes (DEGs) including 54 genes that encode the transcription factors (TFs) were identified between the exposure and control groups. GO and KEGG pathway analysis suggested that these DEGs were involved in inflammatory response, oxidative stress, apoptosis, immune, and cell cycle. Furthermore, the TF-target interaction analysis showed that FOS, HIF-1α, JUNB, ATF3, REL, and KLF4 were important TFs in regulating the hepatic gene expression in response to high ammonia exposure.

Conclusion: Altogether, our findings not only presented a comprehensive mRNA transcriptome profile of liver after high ammonia exposure, but also found some key genes and TFs that could be used to investigate the toxicity mechanism of high ammonia on livers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work was supported by the National Key R&D Program of China [2021YFF1000601] and National Natural Science Foundation of China [NO. 31872402].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.