335
Views
14
CrossRef citations to date
0
Altmetric
Original

c-Yes response to growth factor activation

Mini Review

, , , , , & show all
Pages 263-272 | Received 22 Mar 2005, Published online: 11 Jul 2009
 

Abstract

Transmembrane receptors link the extracellular environment to the internal control elements of the cell. This signaling influences cell division, differentiation, survival, motility, adhesion, spreading and vesicular transport. Central to this signaling is the Src family of nonreceptor tyrosine kinases. The most studied kinase of this nine member family, c-Src, shares a similar structure, as well as a similar expression pattern to that of another Src family protein, c-Yes. Despite high conservation in sequence, molecular studies demonstrate that the functional domains of these kinases can contribute to specificity in signaling. At the cellular level, analysis of tight junction formation also serves as a model to differentiate c-Yes and c-Src signaling.

Results suggest that c-Yes promotes formation of the tight junction by phosphorylating occludin, while c-Src signaling downregulates occludin formation in a Raf-1 dependent manner. In addition, pp62c-Yes knockout mice exhibit a specific physiological function phenotype that is distinct from c-src − / − mice. In these studies, c-yes − / − mice exhibit decreased transcytosis of pIgA from the blood to the bile, while c-src − / − mice exhibit deficits in osteoclasts function and bone resorption. Of particular interest in this review are receptor signals that specifically influence the actions of c-Yes. Growth factors that influence many Src family proteins include the PDGF-R, CSF-1 receptor and others. Since these receptors interact with various Src-family kinases, it is predicted that specific signaling is generated by differential recruitment to the cell membrane and/or differentiated interactions with substrates and binding partners. This review provides an overview of c-Yes interactions with specific receptor signaling pathways and how this interaction potentially influences the known physiological roles of c-Yes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.