415
Views
106
CrossRef citations to date
0
Altmetric
Research Article

“Smart” Drug Carriers: PEGylated TATp-Modified pH-Sensitive Liposomes

&
Pages 197-203 | Received 31 May 2007, Accepted 06 Jun 2007, Published online: 09 Dec 2008
 

Abstract

To engineer drug carriers capable of spontaneous accumulation in tumors and ischemic areas via the enhanced permeability and retention (EPR) effect and further penetration and drug delivery inside tumor or ischemic cells via the action of the cell-penetrating peptide (CPP), we have prepared liposomes simultaneously bearing on their surface CPP (TAT peptide, TATp) moieties and protective PEG chains. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE). Under normal conditions, liposome-grafted PEG “shielded” liposome-attached TATp moieties since the PEG spacer for TATp attachment (PEG1000) was shorter than protective PEG2000. PEGylated liposomes are expected to accumulate in targets via the EPR effect, but inside the “acidified” tumor or ischemic tissues lose their PEG coating due to the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. This concept is shown here to work in cell cultures in vitro as well as in ischemic cardiac tissues in the Langendorff perfused rat heart model and in tumors in experimental mice in vivo.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.