4,570
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Addressing Liver Fibrosis with Liposomes Targeted to Hepatic Stellate Cells

, &
Pages 205-218 | Received 31 May 2007, Accepted 06 Jun 2006, Published online: 09 Dec 2008
 

Abstract

Liver fibrosis is a chronic disease that results from hepatitis B and C infections, alcohol abuse or metabolic and genetic disorders. Ultimately, progression of fibrosis leads to cirrhosis, a stage of the disease characterized by failure of the normal liver functions. Currently, the treatment of liver fibrosis is mainly based on the removal of the underlying cause of the disease and liver transplantation, which is the only treatment for patients with advanced fibrosis. Hepatic stellate cells (HSC) are considered to be key players in the development of liver fibrosis. Chronically activated HSC produces large amounts of extracellular matrix and enhance fibrosis by secreting a broad spectrum of cytokines that exert pro-fibrotic actions in other cells, and in an autocrine manner perpetuate their own activation. Therefore, therapeutic interventions that inhibit activation of HSC and its pro-fibrotic activities are currently under investigation worldwide. In the present study we applied targeted liposomes as drug carriers to HSC in the fibrotic liver and explored the potential of these liposomes in antifibrotic therapies. Moreover, we investigated effects of bioactive compounds delivered by these liposomes on the progression of liver fibrosis. To our knowledge, this is the first study demonstrating that lipid-based drug carriers can be selectively delivered to HSC in the fibrotic liver. By incorporating the bioactive lipid DLPC, these liposomes can modulate different processes such as inflammation and fibrogenesis in the fibrotic liver. This dual functionality of liposomes as a drug carrier system with intrinsic biological effects may be exploited in new approaches to treat liver fibrosis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.