478
Views
23
CrossRef citations to date
0
Altmetric
Research Article

In vitro and in vivo assessment of vitamin A encapsulation in a liposome–protein delivery system

, , , &
Pages 142-152 | Received 22 Apr 2018, Accepted 14 Jul 2018, Published online: 06 Sep 2018
 

Abstract

Vitamin A (VA) is an essential nutrient needed in small amounts by humans and supports a wide range of biological actions. Retinol, the most common and most biologically active form of VA has also been found to inhibit peroxidation processes in membranes and it has been widely used as an ingredient with pharmaceutical and nutritional applications. VA is a lipophilic molecule, sensitive to air, oxidizing agents, ultraviolet light and low pH levels. For these reasons, it is necessary for VA to be protected against oxidation. Another disadvantage in the application of VA is its low solubility in aqueous media. Both issues (sensitivity and solubility) can be solved by employing encapsulation techniques. Liposomes can efficiently encapsulate lipid-soluble materials, such as VA. The encapsulated materials are protected from environmental and chemical changes. A new liposome/β-lactoglobulin formulation has been developed as a stable delivery system for VA. The aim of this study was the encapsulation of VA into β-lactoglobulin–liposome complexes, recently developed in our laboratory. The in vivo bioavailability characterization of VA was tested after administration in laboratory animals (mice). In this report, we demonstrate that VA could be efficiently entrapped and delivered in a phospholipid–sterol–protein membrane resembling system, a newly synthesized promising carrier. Based on this finding, the phospholipid–sterol–protein membrane resembling system may be one of the promising approaches to enhance VA absorption and to overcome the formulation difficulties associated with lipophilic means. The carrier system described here has huge potential in food fortification applications to treat VA deficiency.

Acknowledgements

We are grateful to ‘Biomedcode’ and especially Dr. Niki Karagianni for the free of charge supply of the mice, Dr. Andreas Tsakalof for his valuable advices regarding the protocol followed for VA extraction from the mice serum.

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program ‘Education and Lifelong Learning’ of the National Strategic Reference Framework (NSRF) Research Funding Program: Heracleitus II: Investing in knowledge society through the European Social Fund.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.