430
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

New oilseed rape (Brassica napus L.) varieties – canopy development, yield components, and plant density

&
Pages 260-266 | Received 20 Jan 2014, Accepted 12 Mar 2014, Published online: 08 Apr 2014
 

Abstract

Full exploitation of the potential of new varieties requires research, whose aim is to adapt the technology to their needs. A two-factor experiment evaluated the effect of row spacing (33, 44, and 55 cm) of three oilseed rape (OSR) varieties (conventional, hybrid, and “semi-dwarf” hybrid variety) on canopy area index (CAI) and yield components. At higher row spacing, OSR plants were characterized by a strong increase in the CAI at successive growth stages; thereby, the incomplete use of production area was compensated at the pod development stage. The differences in the CAI between row spacings were significant until the end of flowering, whereas differences in the CAI between varieties were significant until the flower bud development stage. In the next development phases, CAI of OSR plants was at a similar level to all plots. However, the statistical analysis showed a declining trend in seed yield and yield biomass (pods and straw weight) with increasing row spacing. A positive aspect of increased row spacing was a decrease in glucosinolates content in seeds. The differences in fat content were statistically insignificant. The hybrid varieties of OSR produced the highest seed yield at a row spacing of 33 cm, while the conventional – at a row spacing of 44 cm. These relationships are confirmed by high positive correlations of seed weight and pod weight per unit area with CAI. The results have important practical aspect, because it shows that it is possible to reduce the number of OSR plants per unit area, thereby reducing demand for expensive certified seeds for sowing but to certain limits. Too small plant density binds to the risk of decreased seed yield. It may be justified, e.g., in extensive or organic farming where wide row creates the possibility of mechanical weed control.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.