666
Views
38
CrossRef citations to date
0
Altmetric
Articles

A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility

, , &
Pages 1692-1706 | Received 10 Dec 2012, Accepted 02 Apr 2013, Published online: 29 Apr 2013
 

Abstract

In this study, a novel hybrid polyurethane/polycaprolactone (PU/PCL) tubular scaffold was fabricated using the electrospinning process for blood vessel prosthesis applications. The detailed microstructure and material properties such as porosity, tensile and bust strength, contact angle, and biocompatibility were investigated and compared with those of monolithic PU and PCL scaffolds. The mechanical properties of the hybrid PU/PCL scaffold (tensile strength: 18 MPa, pressure strength: 590 mmHg) were found to be within the range needed for artificial blood vessel applications. The pore sizes of the PU/PCL scaffold ranged from 5–150 um in diameter, are sufficient enough to allow nutrient diffusion across the membrane. The reduced hydrophobic property of the PU/PCL scaffold was the result of the addition of relatively less hydrophobic PU compared with monolithic PCL scaffold. The biocompatibility of the PU/PCL scaffold was evaluated through cytotoxicity testing, and morphological observation by scanning electron microscopy and confocal microscopy using cow pulmonary artery endothelial cells and fibroblast like cells (L929).

Acknowledgment

This work was supported by Mid-career Research Program through NFR grant funded by the MEST (NO 2009-0092808), Republic of Korea.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.