358
Views
22
CrossRef citations to date
0
Altmetric
Articles

Immobilized heparin and its anti-coagulation effect on polysulfone membrane surface

, , , , &
Pages 1707-1720 | Received 19 Dec 2012, Accepted 02 Apr 2013, Published online: 24 May 2013
 

Abstract

Polysulfone has been widely used as hemodialysis membrane material because of its excellent physiochemical performance. There is still a need to further improve its anti-coagulation property in clinical practice. In this work, we covalently immobilized heparin onto polysulfone membrane to improve its anti-coagulation performance. Low temperature plasma technique with environmentally friendly nitrogen as the gas source, as well as N-ethyl-N′-[3-dimethylaminopropy] carbodiimide hydrochloride/hydroxy-2,5-dioxopyrolidine-3-sulfonicacid sodium chemistry were utilized to immobilize heparin onto the surface of polysulfone membrane. X-ray photoelectron spectroscopy, attenuated total reflectance Fourier-transform infrared spectroscopy, as well as water contact angle results confirmed successful binding of heparin to the membrane surface. Only slight permeability differences were observed between the immobilized surface and the unmodified surface, while the polysulfone membrane had become more hydrophilic after immobilization. The blood coagulation time was greatly prolonged after modification and less platelets adhesion was observed on the heparin immobilized surface. Also, compared with heparin injection doses in clinical, the heparinized process in our work consumed less heparin. Our study suggests that the immobilized heparin has local anti-coagulation effect, while reducing the doses.

Acknowledgements

We thank our volunteers who denoted their blood for the coagulation and platelet adhesion test. This work was supported by State Key Development Program for Basic Research of China (Grant 2007CB936103), and the Fundamental Research Funds for the Central Universities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.