360
Views
20
CrossRef citations to date
0
Altmetric
Articles

Fabrication and statistical optimization of surface engineered PLGA nanoparticles for naso-brain delivery of ropinirole hydrochloride: in-vitro–ex-vivo studies

&
Pages 1740-1756 | Received 26 Feb 2013, Accepted 21 Apr 2013, Published online: 24 May 2013
 

Abstract

Ropinirole hydrochloride (RPN), a nonergot dopamine D2-agonist used in the management of Parkinson’s disease, has poor oral bioavailability (52%) due to extensive hepatic metabolism. The intent of present research work was aimed at design and statistical optimization of RPN-loaded poly (lactic-co-glycolic acid) (PLGA)-based biodegradable nanoparticles (NPs) surface modified using natural emulsifier, vitamin E (d-α-tocopheryl polyethylene glycol 1000 succinate [TPGS]) for direct nose-to-brain delivery in order to avoid hepatic first-pass metabolism, and improve therapeutic efficacy with sustained drug release. RPN-NPs were prepared by modified nanoprecipitation technique and optimized using 23 factorial design of experiment. The effect of polymer and emulsifier concentration was evaluated on particle size and entrapment efficiency (EE%). Formulation PL6 was considered as desirable with highest EE% (72.3 ± 6.1%), PS (279.4 ± 1.8 nm), zeta potential (−29.4 ± 2.6mV), and cumulative drug diffusion of 96.43 ± 3.1% in 24 h. The ANOVA results for the dependent variables demonstrated that the model was significant (p value < 0.05) for response variables. Histopathological study of optimized batch (PL6) demonstrated good retention of NPs with no severe signs of damage on the integrity of nasal mucosa. Differential scanning calorimetry revealed the absence of any chemical interaction between RPN, PLGA, and TPGS while SEM study confirmed spherical shape of optimized NPs. Accelerated stability studies of freeze-dried optimized batch demonstrated negligible change in the average PS and EE% after storage at 25 ± 2 °C/60 ± 5% (relative humidity (RH) for the period of three months. The promising results of optimized batch suggested practicability of investigated system for enhancement of bioavailability and brain targeting of CNS acting drugs like RPN.

Acknowledgments

The authors are thankful to Wockhardt Pharmaceutical (Aurangabad, India), Purac Biomaterials (Netherland) for providing Ropinirole hydrochloride and PLGA, respectively. The facilities provided by the management and principal of H.R. Patel Institute of Pharmaceutical Education And Research, cannot be left unacknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.