393
Views
11
CrossRef citations to date
0
Altmetric
Articles

F127/Calcium phosphate hybrid nanoparticles: a promising vector for improving siRNA delivery and gene silencing

, , , , &
Pages 1757-1766 | Received 22 Feb 2013, Accepted 26 Apr 2013, Published online: 08 Jun 2013
 

Abstract

Calcium phosphate-based transfection method had been used to transfer DNA into living cells. However, it had so far not been studied in detail to what extend siRNA delivery system. In this study, Pluronic F127/calcium phosphate hybrid nanoparticles (F127/CaP) were prepared by a facile room temperature method and employed as carriers to deliver siRNA to silence tumor cell. The morphology of the F127/CaP hybrid nanoparticles was investigated with TEM. In order to determine the ratio of F127 to CaP in the hybrid nanoparticles, TGA (the thermogravimetric analysis) was applied. MTT assays confirmed that the F127/CaP hybrid nanoparticles were quite safe. The hybrid F127/CaP nanoparticles obtained were 120–210 nm in diameter, and they were applied as siRNA carriers for siRNA loading and in vitro transfection. The siRNA encapsulating efficiency was 91.5 wt.% with a loading content of 6.5 wt.%. Compared to traditional CaP transfection method, the siRNA-loaded F127/CaP exhibited higher gene inhibition efficiency, and this was supported by fluorescence microscopy. Quantitative analysis of GFP silencing efficiency of various siRNA formulations was measured by using FACS flow cytometry analysis. Additionally, both custom CaP and F127/CaP are biocompatible and biodegradable, thus the as-prepared F127/CaP hybrid nanoparticles are promising for siRNA delivery.

Acknowledgements

This research was supported by the Natural Science Foundation of China (Nos. 81272568, 81101738 and 81172078), Biological pharmaceutical and agricultural fields from Science and Technology Commission of Shanghai Municipality (No. 114119a3300) and the program for National S & T Major project of China (No. 2011ZX09501-001-01).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.