303
Views
7
CrossRef citations to date
0
Altmetric
Articles

Complexation-triggerable liposome mixed with silk protein and chitosan

&
Pages 766-779 | Received 24 Mar 2015, Accepted 02 Jun 2015, Published online: 03 Jul 2015
 

Abstract

Complexation-triggerable liposomes were prepared by modifying the surface of egg phosphatidylcholine (EPC) liposomes with hydrophobicized silk fibroin (HmSF) and hydrophobicized chitosan (HmCh). Maximum complexation, determined by measuring the diameter of complexation, was found when the ratio of HmSF to HmCh was 14:1, so they were immobilized on the surface of liposomes at the same ratio. The degree of fluorescence quenching of calcein in liposomal suspension was as high as 68% when the ratio of surface modifier (HmSF + HmCh) to EPC was 1:15. When the ratio was increased to 1:5, the degree of quenching decreased to 32%, indicating the inefficient formation of liposome. Liposome mixed with the surface modifier was multi-lamellar vesicle on TEM photo. And, the mean diameter was larger than those of liposome mixed with either HmSF or HmCh, possibly due to insoluble complex on the liposomal surface. The liposome exhibited a pH-sensitive release and triggered the release at pH 5.5 and 6.0. It is believed that complexation is responsible for the promoted release at those pH values.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the Leaders in Industry-University Cooperation (LINC) Project funded by the Ministry of Education in 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.