235
Views
2
CrossRef citations to date
0
Altmetric
Articles

A double-lyophilization method for the preparation of CS/GO-COOH scaffold and its application in blood detoxification

, , , , , , & show all
Pages 1788-1807 | Received 19 Jun 2016, Accepted 14 Sep 2016, Published online: 10 Oct 2016
 

Abstract

The accumulation of uremic toxins in blood might induce chronic renal failure (CRF). The incidence of CRF was as high as 10%. The traditional therapy for CRF was hemodialysis, which was more effective to remove small molecules, such as urea and creatinine. However, this detoxification method ignored the tissue functional adaption due to the retention of macromolecule uremic toxins. To solve this problem, this paper developed a new kind of chitosan/carboxyl graphite oxide (CS/GO-COOH) scaffold via a double-lyophilization method. Then, this synthetic scaffold was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, hydrophilic test, mechanical property, and in vitro detoxification test. Covalent bonding and hydrogen bonding were formed, indicating the strong interactions between CS and GO-COOH. There were interconnected networks in the synthesized scaffold. The mechanical test suggested that the GO-2500 scaffold had excellent mechanical strength, which was 7.41 ± 0.82 MPa with 25% shrink. What is more, GO-2500 could totally rebound within 1s, after compressed to 90% shrink. The rates of GO-2500 were 1587 ± 60 and 246 ± 10% according to the water uptake and retention data, respectively. Furthermore, the detoxification of GO-2500 to urea, creatinine, VB12, and β2-m were 67.59 ± 2.31, 39.67 ± 2.95, 31.51 ± 2.62, and 83.82 ± 7.76 mg/g, respectively. The resulting CS/GO-COOH scaffold held great potential for the detoxification of uremic toxins.

Acknowledgments

Thanks to Michael Anderson (Department of neuroscience, School of medicine, Johns Hopkins University) for English editing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.