362
Views
16
CrossRef citations to date
0
Altmetric
Articles

Design of amphiphilic PCL-PEG-PCL block copolymers as vehicles of Ginkgolide B and their brain-targeting studies

, , , &
Pages 1497-1510 | Received 31 Mar 2017, Accepted 16 May 2017, Published online: 28 May 2017
 

Abstract

The amphiphilic PEG-b-PCL block copolymers were synthesized by ring-opening polymerization. The specific and selective antagonists of platelet activating factor, Ginkgolide B (GB), was successfully encapsulated in the synthesized PEG-PCL nanoparticles (NPs) with high Encapsulation Efficiency and Drug Loading. The synthesis of different PEG-PCL copolymers were confirmed with FTIR and 1H NMR spectra. The morphology and particles size distribution of cargo-free PEG-PCL NPs were studied by transmission electron microscope (TEM) analysis and Malvern laser particle analyzer. The bio-distribution and pharmacodynamics studies of GB were studied with Wistar mice as the animal models via tail injecting of GB-PEG-PCL NPs. Results from Malvern laser particle analyzer and TEM analysis illustrated that the cargo-free NPs showed narrow distribution and well separated particles size of about 60 nm in diameter. The in vitro experiment of GB-PEG-PCL NPs exhibited an extended release behavior. The bio-distribution data suggested that Tween-80 covered GB-PEG-PCL NPs showed a brain-targeting behavior. The pharmacodynamics results confirmed that the GB-PEG-PCL NPs had an obvious cerebral protection effect.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.