195
Views
4
CrossRef citations to date
0
Altmetric
Articles

Comparison of ovalbumin and ovalbumin epitope peptide for transdermal delivery and vaccination mediated by the photothermal effect of gold nanorods

, , , , &
Pages 1888-1898 | Received 09 Jun 2017, Accepted 18 Jul 2017, Published online: 26 Jul 2017
 

Abstract

Transdermal protein delivery is a powerful and attractive method for protein therapy and dermal vaccination compared with other administrations. However, this delivery method is restricted by the low permeability of the stratum corneum (SC), a hydrophobic barrier that restricts the entry of hydrophilic molecules such as proteins. In this study, we developed an improved gel patch system carrying ovalbumin and ovalbumin epitope peptide, and then compared their permeability into the skin. First, the gel patch was placed on mouse skin to allow contact with the polymer coated gold nanorods and then irradiated by a continuous-wave laser. Thermal ablation of the SC improved the permeability and translocation of ovalbumin and the peptide. Fluorescence images showed the translocation was enhanced when the skin was treated with the FITC-modified ovalbumin epitope peptide. However, induction of anti-OVA IgG production after treatment with the FITC-modified ovalbumin epitope peptide was lower than that with FITC-OVA.

Acknowledgments

The authors would also like to acknowledge the Japan International Cooperation Agency (JICA) for their support of this project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.