438
Views
14
CrossRef citations to date
0
Altmetric
Articles

Immobilizing argatroban and mPEG-NH2 on a polyethersulfone membrane surface to prepare an effective nonthrombogenic biointerface

, , &
Pages 608-628 | Received 23 Dec 2018, Accepted 12 Mar 2019, Published online: 04 Apr 2019
 

Abstract

Systemic anticoagulation is not suitable for hemodialysis (HD) patients with a high risk of bleeding in the clinic. An HD membrane that provides a localized anticoagulation membrane surface may be a promising strategy to solve this intractable problem for HD patients. Herein, we modified a nonthrombogenic polyethersulfone (PES) dialyzer membrane by grafting argatroban (AG) and methoxy polyethylene glycol amine (mPEG-NH2) via a polydopamine (PDA) strategy. The PES substrates were immersed in an alkaline dopamine solution for 24 h, and then, AG and mPEG-NH2 were sequentially grafted covalently onto the resultant membrane. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were utilized to confirm the successful introduction of PDA and the immobilization of AG and mPEG-NH2. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe the surface structure and morphology after the surface modification. The excellent antithrombotic abilities of the modified membrane were demonstrated by the suppression of platelet adhesion and activation, prolongation of clotting times, and inhibition of thrombin generation and complement activation. This work describes an efficient and convenient method to immobilize AG and mPEG-NH2 to create a nonthrombogenic biointerface for blood-contacting devices such as HD membranes.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No.81670693). The authors sincerely thank our laboratory members and Prof. Wang Pingshan for their generous help.

Disclosure statement

The authors have no conflicts to declare.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China (No.81670693). The authors sincerely thank our laboratory members and Prof. Wang Pingshan for their generous help.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.