519
Views
23
CrossRef citations to date
0
Altmetric
Articles

The physical, mechanical, and biological properties of silk fibroin/chitosan/reduced graphene oxide composite membranes for guided bone regeneration

, &
Pages 1779-1802 | Received 22 May 2019, Accepted 07 Sep 2019, Published online: 23 Sep 2019
 

Abstract

In this study, blends of chitosan (CS)/silk fibroin (SF) and reduced graphene oxide (rGO) as guided bone regeneration membranes were fabricated by solvent casting method and their architectural features, hydrophilicity, porosity, swelling, degradation, and mechanical properties were investigated. The influence of CS, SF, and rGO on osteoblasts spreading and attachment was also determined by scanning electron microscopy (SEM) images and DAPI (4′, 6-diamidoino-2-phenylindole) staining assay. The osteogenic differentiation was determined by the alizarin red staining and alkaline phosphatase activity. The results demonstrated that, the hydrophilicity, swelling and degradability decreases with the increase of SF content, whereas tensile strength increases accordingly. It was confirmed that with increasing the rGO concentration, the porosity and tensile strength decreased but the hydrophilicity was improved. The cell behaviors of G-292 cells were enhanced by increasing the CS content. According to the results, it can be concluded that, SF/CS/rGO blended membranes are promising candidates for bone tissue engineering and optimum results were obtained for the membrane composed of SF:CS: rGO with 84:7:9 weight ratio. It should be noted that the optimized membranes should be further studied for clinical applications.

Disclosure statement

The authors declare no competing financial interest.

Additional information

Funding

This work is financially supported by Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC, Iran).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.