279
Views
1
CrossRef citations to date
0
Altmetric
Articles

Comparative study of poly tannic acid functionalized magnetic particles before and after modification for immobilized penicillin G acylase

, , , ORCID Icon, &
Pages 823-846 | Received 15 Oct 2021, Accepted 17 Dec 2021, Published online: 30 Dec 2021
 

Abstract

In this work, Fe3O4 nanoparticles (NPs) was synthesized by inverting microemulsion method. After that, based on the physical and chemical properties of tannic acid (TA), poly tannic acid (PTA) was coated on Fe3O4 NPs surface. Fe3O4 NPs coated with PTA, on the one hand, was used to immobilize Penicillin G acylase (PGA) by physical adsorption. On the other hand, it was modified by glutaraldehyde (GA). GA grafting rate (Gr-GA) was optimized, and the Gr-GA was 30.0% under the optimum conditions. Then, through the Schiff base reaction between the glutaraldehyde group and PGA amino group, this covalent immobilization of PGA was further realized under mild conditions. Finally, the structures of every stage of magnetic composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibration magnetometer (VSM) and transmission electron microscopy (TEM), respectively. The results indicated that the enzyme activity (EA), enzyme activity recovery (EAR) and maximum load (ELC) of the immobilized PGA were 26843 U/g, 80.2% and 125 mg/g, respectively. Compared to the physical immobilization of PGA by only coating PTA nanoparticles, further modified nanoparticles by GA showed higher catalytic stability, reusability and storage stability.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51563015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.