125
Views
0
CrossRef citations to date
0
Altmetric
Article

Fabrication of novel ruthenium loaded silk fibroin nanomaterials for fingolimod release improved antitumor efficacy in hepatocellular carcinoma

, , , , ORCID Icon &
Pages 1955-1972 | Received 20 Dec 2021, Accepted 13 Jun 2022, Published online: 12 Jul 2022
 

Abstract

Cancer targeted nanomaterials-based drug delivery systems have been described as promising. In this work, we employed silk fibroin (SF), ruthenium nanomaterials (RuNMs), heptapeptide (T7), and fingolimod (FTY720) to construct a pH-responsive smart nanomaterials drug delivery system. They were spherical with a mean size of around 120 nm, which may have contributed to the improved penetration and retention of the NMs in tumour areas. T7-FTY720@SF-RuNMs had an encapsulation efficiency (EE) of 72.51 ± 4.02%. When the pH of an environment is acidic, the release of FTY720 from nanocarriers is enhanced. T7-FTY720@SF-RuNMs demonstrated increased cellular uptake selective and anticancer efficacy for hepatocellular cancer in both in vitro and in vivo experiments. Additionally, the in vivo biodistribution investigation showed that T7-FTY720@SF-RuNMs could efficiently aggregate in the tumour location, improving their in vivo potential to kill cancer cells. T7-FTY720@SF-RuNMs demonstrated little toxicity to tumour-bearing animals in investigations of histology and immunohistochemistry, showing that the fabricated NMs are biocompatible in vivo. For the treatment of hepatocellular cancer, the T7-FTY720@SF-RuNMs delivery method offers significant promise.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.