240
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

PVA, licorice, and collagen (PLC) based hybrid bio-nano scaffold for wound healing application

& ORCID Icon
Pages 1217-1236 | Received 13 Oct 2022, Accepted 24 Dec 2022, Published online: 02 Jan 2023
 

Abstract

Nanofibrous scaffolds with core-shell structures can deliver bioactive agents, augment mechanical properties, provide a high surface area to volume ratio, and most importantly mimic the structure of extracellular matrix (ECM) which enables to maintain of a moist environment, elimination of excess exudates and provide antibacterial properties to impede infections. This study has developed PVA, licorice, and collagen (PLC) based hybrid bio-nano scaffold by co-axial electrospinning technique for enhancing wound closure. The core layer was made by PVA & licorice extract and shell layer was created by collagen & licorice extract solution. The morphology, moisture management properties, presence of constituent polymer, thermal behavior, and mechanical properties of the developed samples were characterized by FE-SEM, moisture management tester (MMT), FT/IR, TGA, tensile testing machine. Furthermore, in vitro antibacterial assay was conducted by Kirby-Bauer disk diffusion method for investigating antibacterial properties and an in-vivo wound healing assessment was employed by observing the wound healing. Then FE-SEM images showed the lowest and highest average diameters 119 nm and 154 nm respectively, FT/IR spectra ensured the presence of all materials in the sample. Furthermore, the moisture management test result demonstrated slow absorbing and slow drying scaffolds which emphasized the eligibility of the sample to be an ideal candidate for wound healing. Moreover, the minimum and maximum zones of inhibition (ZOI) were found 7 mm and 8 mm against the bacteria Staphylococcus aureus. Finally, an in vivo wound healing assessment revealed a better healing performance of the developed samples after 10 days.

GRAPHICAL ABSTRACT

Acknowledgement

The authors are grateful to the Department of Textile Engineering at DUET for providing the laboratories required to develop this research.

Authors’ contributions

Md Mehedi Hasan: Conceptualization, Methodology, Investigation, Writing-Original draft preparation, Reviewing and Editing, Visualization; Md Abdus Shahid: Conceptualization, Methodology, Investigation, Writing- Reviewing and Editing, Formal analysis, Visualization, Supervision.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.