315
Views
3
CrossRef citations to date
0
Altmetric
Articles

Nonlinear active Huygens metasurfaces for reflectionless phase conjugation of electromagnetic waves in electrically thin layers

, &
Pages 1309-1328 | Received 12 Feb 2013, Accepted 22 May 2013, Published online: 25 Jun 2013
 

Abstract

A possibility of almost perfect phase conjugation in electrically thin nonlinear sheets is shown for the normal incidence of the signal wave, using either symmetrical or asymmetrical particles and nondegenerate interaction with slightly different frequencies of the incident and phase-conjugated waves. Under these conditions, the use of linear and nonlinear Huygens sources for both linear (signal) and nonlinear (phase-conjugated) waves ensures zero or very small reflection for both of them. In perspective, this can lead to realization of reflectionless superlens based on three-wave interactions, as well to other applications based on reflection-free and electrically thin nonlinear layers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.