48
Views
0
CrossRef citations to date
0
Altmetric
Articles

Application of finite impulse response network concept in wavelength-tunable electro-optic filter

, &
Pages 2123-2134 | Received 14 Jan 2013, Accepted 04 Aug 2013, Published online: 05 Sep 2013
 

Abstract

We present a model of wavelength-tunable electro-optic filter on x-cut, y-propagation Ti-diffused lithium niobate. The filter is composed of two polarization beam splitters and a polarization converter which is controlled by an N-stage cascade of alternating coupled-mode and phase-shifted electrodes. The concept of finite impulse response digital filtering is used to calculate the voltage matrices and in the z field, which control the mode coupling and phase shift respectively. By changing the input voltages, a wavelength-tunable bandpass filter or a non-periodic multi-wavelength selector can be obtained. For the bandpass filter, the rectangular degree of passband can be improved by increasing the number of cascading stages . If is equal to 24, the side mode suppression ratio (SMSR) could reach 25 dB. And the passband can be tuned by simply changing the voltage matrix . For the multi-wavelength selector, the design process can be fulfilled by the discrete Fourier transform method. The bandwidth of each selected wavelength increases but the number of selected wavelengths decreases when the number of cascading stages decreases. If is equal to 24, a bandwidth of 0.29 nm with a SMSR of 12 dB is achieved within a 8 nm range centered at 1550 nm.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (grant 60777014) and Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (grant 20090032110027). The authors thank Prof. E.Z. Yang, Prof. R.F. Zhang, and Prof. C.G. Lv for their support of this program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.