102
Views
1
CrossRef citations to date
0
Altmetric
Articles

High dielectric constant EBG technology to avoid gratings lobes and scan blindness in array configurations

, &
Pages 2341-2354 | Received 08 Mar 2013, Accepted 19 Sep 2013, Published online: 16 Oct 2013
 

Abstract

High dielectric electromagnetic band gap (EBG) substrates can be used in patch antenna configurations to reduce size and mitigate substrate modes propagation with reasonable radiation efficiency values (ηrad > 0.55). Furthermore, EBG substrate structures applied in array configurations are able to avoid grating lobes and scan blindness phenomena as distance and coupling between patch antenna-radiating elements can be reduced at the same time. In this paper, a 2 × 2 array configuration using Zirconium Tin Titanate EBG substrate with high dielectric constant is presented. The array has been simulated showing 9 dB coupling reduction obtained by the inclusion of the EBG substrate in between the patch antennas placed to a distance lower than 0,5λ0. This short distance together with the coupling reduction results in a configuration which does not suffer from grating lobes and scan blindness problems, obtaining a 30º scan angle for the 2 × 2 configuration which is the maximum achievable angle due to a 2 × 2 array factor. A scan angle larger than 70º can be seen for the infinite configuration.

Acknowledgements

This work was supported by Spanish Ministry of Science and Innovation through projects TEC 2009-11995 and CONSOLIDER EMET- CSD2008-00066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.