132
Views
2
CrossRef citations to date
0
Altmetric
Articles

Four-dimensional SAR imaging algorithm using Bayesian compressive sensing

&
Pages 1661-1676 | Received 13 Jan 2014, Accepted 19 Jun 2014, Published online: 30 Jul 2014
 

Abstract

The compressive sensing (CS) based 4-D synthetic aperture radar (SAR) imaging method performs well in the case of high signal-to-noise ratios (SNR). However, in the presence of strong noises, the performance of CS-based method degrades and the number of false targets increases rapidly. In this paper, a novel 4-D SAR imaging method is proposed based on Bayesian compressive sensing (BCS). Assume that the target scattering field follows the Cauchy distribution, the 4-D SAR imaging is transformed into signal reconstruction via maximum a posteriori estimation. In addition, Poisson disk sampling is utilized to generate the radar positions of 4-D SAR in the baseline-time plane. Experimental results show that the proposed method is capable of effective suppression of the noise by exploiting the sparseness prior distribution of the image scene, and a well-focused image could also be achieved even under the condition of low SNR.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under [grant number 61201390], the Plan for Young Backbone Teacher of Henan University of Technology, and the Plan for Scientific Innovation Talent of Henan University of Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.