126
Views
3
CrossRef citations to date
0
Altmetric
Articles

Novel microstrip left-handed resonator with dual notched bands and its application in miniaturized triple-band 3-dB power divider

, , , &
Pages 210-217 | Received 24 Mar 2014, Accepted 27 Nov 2014, Published online: 08 Jan 2015
 

Abstract

A novel microstrip left-handed resonator (LHR) is proposed in this paper by embedding narrow central symmetric spiral lines in the rectangular gap of the main microstrip line. According to the EM simulated results, the proposed LHR has two narrow notched bands, which is produced by the magnetic resonance and sudden change of the effective permeability and effective permittivity; the phase characteristics of the proposed LHR show that there are two frequency points with −90-degree phase shift and one frequency point with +90-degree phase shift in the passbands. According to the electromagnetic characteristics of the proposed LHR, we use it to replace the 70.7 Ω transmission line of conventional Wilkinson power divider, and a compact triple-band 3-dB power divider is presented. After fabrication, the presented triple-band power divider is measured by using Anritsu ME7808A vector network analyzer, the measured and simulated results are in good agreement with each other, showing that, the fabricated power divider operating at 2.20, 3.40, and 7.50 GHz with bandwidths of 84.5, 35.8, and 15.2%; in the passbands, the return loss is better than 15 dB, the insertion loss is between 3.4 ± 0.2 dB, and the isolation between port 2 and 3 is better than 20 dB. Moreover, the out-of-band rejection among three operating bands is also very good, which benefits from the two narrow notched bands. Simultaneously, the effective area of the fabricated power divider is 0.121 λg by 0.116 λg (where λg is the guided wavelength at 2.20 GHz), about 55.2% relative to that of conventional one operating at 2.20 GHz. Besides, the presented power divider is uniplanar, and there is no defected ground structure or lumped element.

Acknowledgement

The authors would also like to thank the China North Electronic Engineering Research Institute for the fabrication.

Additional information

Funding

This work is supported by the National Natural Science Foundation of China [grant number 61372034].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.