142
Views
12
CrossRef citations to date
0
Altmetric
Articles

Sierpinski carpet fractal-based planar array optimization based on differential evolution algorithm

, , &
Pages 247-260 | Received 22 May 2014, Accepted 04 Dec 2014, Published online: 08 Jan 2015
 

Abstract

This paper considers fractal-based antenna array optimization using differential evolution algorithm (DEA). The proposed optimization technique of planar fractal array is based on Sierpinski carpet fractal array concept. Generally, fractal arrays like Sierpinski carpet may suffer from increased peak side lobe level (PSLL), as well as complex array factor computation that isolates it from the application of any evolutionary optimization techniques. Based on Sierpinski carpet array, a novel iterative feed matrix is proposed, whose inclusion eases the computation complexity of Sierpinski fractal array at different stages of growth and make them suitable for the application of any evolutionary optimization techniques. Thus, a novel method to compute Sierpinski carpet array factor has been proposed and DEA has been applied for element reduction as well as PSLL minimization of original Sierpinski carpet-patterned array at different stages of growth. The optimized version of Sierpinski carpet array produces lower PSLL with reduced radiating elements than its original counterpart.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.