146
Views
2
CrossRef citations to date
0
Altmetric
Articles

The dual polarization method for characterization of dielectric materials

, &
Pages 318-330 | Received 16 Jun 2015, Accepted 09 Oct 2015, Published online: 11 Jan 2016
 

Abstract

The nondestructive characterization of in situ conductor-backed media is an important task for many commercial and military applications. These and similar applications may require completely nondestructive and noncontact free space material characterization methods. Free space methods which fit these characteristics are at premium. One such of these methods is the dual polarization method. The dual polarization method utilizes the measurement of the reflection coefficient at both parallel and perpendicular polarization to determine the permittivity and permeability of an unknown material sample. This paper presents an overview of the dual polarization method to characterize conductor-backed media and two additional implementations of the method specific only to dielectric materials. These additional implementations include the characterization of conductor-backed dielectrics with either known or unknown sample thickness. All three implementations of the dual polarization method presented are demonstrated with measured reflection data from a conductor-backed Plexiglas sample and are shown with accompanying sensitivity analysis.

Notes

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.