361
Views
21
CrossRef citations to date
0
Altmetric
Articles

Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators

&
Pages 945-961 | Received 23 Oct 2015, Accepted 14 Mar 2016, Published online: 03 May 2016
 

Abstract

We present microstrip-based radiating structures loaded with multiple corrugated and non-corrugated split-ring resonator (SRR) metamaterials. We analyze how the change in gap spacing between multiple corrugated and non-corrugated SRRs can improve the bandwidth and gain performance compared to conventional SRR antenna designs. Regarding the corrugated designs, square teeth have been added to the outer edges of SRR rings. The microstrip antenna performance loaded with eight different SRR loads is analyzed. By changing the gap between the multiple SRR rings, the radiating response of the proposed antenna designs can be improved. Corrugated SRRs are also found to strongly improve the performance of conventional non-corrugated SRR-loaded antenna designs. The reflection coefficient, bandwidth, and radiation pattern results are presented and compared to previous relevant metamaterial microstrip antenna works. The highest obtained bandwidth is 420 MHz, which is achieved by three square teeth SRRs. The highest calculated gain is 7 dB and is achieved by loading two square teeth SRRs. The proposed antenna design can be tuned to different frequency bands by embedding microelectromechanical system switches in SRRs’ gaps. The proposed antennas have compact size combined with high bandwidth and gain performance.

Funding

This work was partially supported by the Office of Research and Economic Development at University of Nebraska-Lincoln.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.