232
Views
2
CrossRef citations to date
0
Altmetric
Articles

Feasibility study: highly integrated chipset design for compact synthetic aperture radar payload on micro-satellite

, , , &
Pages 594-603 | Received 29 Aug 2016, Accepted 13 Feb 2017, Published online: 15 Mar 2017
 

Abstract

Micro- and nano-satellites are attractive due to the low development and launching costs. Carried by micro- and nano-satellites, synthetic aperture radars (SARs) have great potential for urban, oceanography, land use, and agriculture usages. Different than conventional satellites, the payload of micro- and nano-satellites is limited. This imposes great challenges on the SAR system design. Traditional SARs adopt thousands of millimeter-wave integrated circuit (MMIC) components; they are bulky and power hungry. This paper investigates the feasibility to deploy the emerging technologies to shrink the volume, reduce the cost, and improve the power efficiency of the SAR system. Highly integrated radar transceiver integrated circuits (ICs) are reviewed, and an SAR transceiver IC is developed. Design technologies of low-noise amplifiers (LNAs) and high-power amplifiers (HPAs) are compared, and Gallium Nitride (GaN) technology is proposed. A novel microelectromechanical system-based delay line is also proposed for satellite SAR to reduce the system size. Existing issues and expected improvements of these technologies are also elaborated. This work shows a clear route map for the future shrinkage of SAR system, and would be a useful guideline to the development of compact SARs for micro-satellites.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.