103
Views
1
CrossRef citations to date
0
Altmetric
Articles

Fast frequency sweep of metallic antennas using frequency-independent reaction and enhanced gap source model

, &
Pages 1093-1100 | Received 08 Dec 2016, Accepted 24 May 2017, Published online: 15 Jun 2017
 

Abstract

In this paper, the enhanced gap source model is combined with the frequency-independent reaction(FIR)-MoM to analyze the input impedance of the metallic antenna over a wide frequency band. The enhanced gap source model is a simple feeding model, which can overcome the instability of the gap source model. Thus, the stable results can be obtained. In the FIR-MoM, the exponential of the Green’s function is expanded as Taylor series in terms of the distance between the centers of the testing and source functions. The impedance matrix is expressed as the summation, in which each term is the multiplication of the frequency-independent matrix and the frequency-dependent phase term. The frequency-independent matrices are computed before the frequency sweep. Thus, the efficiency of the FIR is very high. The impedance matrix can be efficiently generated when the FIR is used for frequency sweep. The FIR-MoM is suitable for the whole frequency range. Moreover, the precision can be dynamically improved. By combining these two techniques, the stable results over a wide frequency range can be efficiently obtained. To test the accuracy and efficiency of the proposed method, two numerical examples are implemented. Numerical results validate the accuracy and the efficiency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.