178
Views
1
CrossRef citations to date
0
Altmetric
Articles

A parametric model of NIR and SWIR reflectance spectra for dyed fabrics

, &
Pages 1508-1519 | Received 28 Feb 2017, Accepted 29 Jun 2017, Published online: 20 Jul 2017
 

Abstract

This study describes a parametric model of diffuse reflectance for the purpose of simulating the spectral response of near-infrared (NIR, 0.7–0.9 μm) and shortwave infrared (SWIR, 0.9–1.7 μm) absorbing dyes for minimizing NIR-SWIR reflectance of dyed fabrics. This model is purely phenomenological, but is optimal with respect to numbers of parameters. This model establishes ground-work for development of a prediction tool, which when given the constituent materials available, will enable rapid optimization of NIR/SWIR band contrast matching of composite systems, (e.g. uniforms and ancillary gear) for a given specification of NIR-SWIR reflectance. This model adopts absorption coefficients for NIR/SWIR absorbing dyes whose absorption spectra span the NIR/SWIR spectral range. Military camouflage fabric consisting of 50/50 nylon/cotton blend in a ripstop weave printed with four-color digital pattern was used as the test substrate for NIR/SWIR dye application. The results of this study provide validation of the parametric model within reasonable error, for practical applications including simulating NIR/SWIR spectral responses corresponding to fixed dye and dye blend concentrations in prototype camouflage fabrics.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.