461
Views
1
CrossRef citations to date
0
Altmetric
Articles

Wideband and high efficiency reflective polarization rotator based on metasurface

, , &
Pages 265-273 | Received 26 Mar 2017, Accepted 05 Sep 2017, Published online: 14 Sep 2017
 

Abstract

A wideband and high efficiency reflective polarization rotator (PR) based on metasurface is presented. The unit cell of the PR consisting of two oblique symmetry triangle split rings and simulated results show the PR has more than 90% polarization conversion efficiency from 9.24 to 17.64 GHz (a relative bandwidth of 62.50%) under normal incidence. The broad polarization conversion bandwidth and high efficiency results from multiple plasmon resonances and nearly 100% polarization conversion is obtained at three plasmon resonances. The mechanism of the proposed PR is analyzed by surface current distributions. Electric and magnetic resonances generate broad polarization conversion bandwidth and high polarization conversion ratio within the operating band. In addition, we analyze the polarization states of the PR unit numerically based on the reflected fields, which serves as theoretical predictions of polarization conversion. To verify the simulation results and analysis, a sample was fabricated and measured. The measured results are in good agreement with simulated results and numerical analysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.