153
Views
2
CrossRef citations to date
0
Altmetric
Articles

Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrödinger’s equation for Davydov solitons

, , &
Pages 858-873 | Received 08 Sep 2017, Accepted 16 Nov 2017, Published online: 10 Dec 2017
 

Abstract

In this paper, the optical solitons to the modified nonlinear Schrödinger’s equation for davydov solitons are investigate. The modified F-expansion method is the integration technique employed to achieve this task. This yielded a combined and other soliton solutions. The Lie point symmetry generators of a system of partial differential equations acquired by decomposing the equation into real and imaginary components are derived. We prove that the system is nonlinearly self-adjoint with an explicit form of a differential substitution satisfying the nonlinear self-adjoint condition. Then we use these facts to construct a set of local conservation laws (Cls) for the system using the general Cls theorem presented by Ibragimov. Furthermore, the modulation instability (MI) is analyzed based on the standard linear-stability analysis and the MI gain spectrum is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

Notes

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.