280
Views
18
CrossRef citations to date
0
Altmetric
Articles

Multiple input multiple output dielectric resonator antenna with circular polarized adaptability for 5G applications

, , , & ORCID Icon
Pages 1180-1194 | Received 08 Oct 2019, Accepted 09 Feb 2020, Published online: 23 Feb 2020
 

ABSTRACT

In this paper, the concept of the circularly polarized agile, multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) structure for fifth generation (5G) new radio application in mobile terminal is presented. Two prototypes have been fabricated, namely one with cylindrical DRA (CDRA) referred as A1 and a second one with ring DRA (RDRA) named as A2. These practical realizations of dual-port MIMO antennas have been mounted on a Rogers 5870 substrate of octagonal shape with proper ground architecture. The proposed dual-port MIMO antennas have been excited with conformal probes and L-type feed network aiming to achieve circular polarization (CP). Measured impedance bandwidth of A1 and A2 are 21.2% (3.15–3.9 GHz) and 22.2% (3.12–3.9 GHz), respectively. Moreover, for both antennas low mutual coupling between ports with minimum isolation of 20 dB over entire impedance bandwidth has been obtained by using triangular head slots in the ground plane. Measured axial ratio bandwidths in broadside direction (θ=0) are 5.66% (3.26–3.45 GHz) and 4.25% (3.45–3.6 GHz), respectively. Maximum gains are 7.3 and 7.2 dBi, in that order. MIMO antenna parameters such as envelope correction coefficient, diversity gain (DG), mean effective gain and total active reflection coefficient are also calculated to verify MIMO performance parameters. The proposed antennas also demonstrate CP agility with insertion of concentric cylindrical shells of different radii.

Acknowledgments

The authors would also like to acknowledge the Principal, G.B. Pant Engineering College Delhi, India, for providing antenna measurement facility at G.B.P.C.E. Delhi.

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

Binod K. Kanaujia acknowledges DBT & COE project funds for providing infrastructure support and DST-PURSE, Govt. of India & UPE II ID:340, JNU for providingsupport throughout this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.