95
Views
3
CrossRef citations to date
0
Altmetric
Articles

Inverse scattering of a periodic inhomogeneous dielectric scatterer

, &
Pages 1015-1028 | Received 13 Dec 2019, Accepted 02 May 2020, Published online: 26 May 2020
 

ABSTRACT

This paper is to reconstruct the periodic inhomogeneous dielectric distribution of the scatterer buried in the rough surface. In order to explore the dielectric coefficient distribution of the unknown dielectric object under the rough surface, we emit electromagnetic wave to the object and measure the scattered electromagnetic wave above the rough surface. Base on Green's identity and the induced current concepts, the nonlinear integral equation can be derived and solved by the method of moments. Next, the inverse scattering problem is converted into an optimization problem. We use Self-Adaptive Dynamic Differential Evolution (SADDE) and Asynchronous Particle Swarm Optimization (APSO) to find the extreme value of the problem. With the regularization technique, the reconstruction is good. When the noise is less than 1%, the dielectric constant can also be achieved successfully. Numerical results show that SADDE can reduce the error for the permittivities of the object better than the APSO.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Ministry of Science and Technology, Taiwan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.