625
Views
3
CrossRef citations to date
0
Altmetric
Review

GPR radargrams analysis through machine learning approach

ORCID Icon, , , ORCID Icon, ORCID Icon, , & show all
Pages 1678-1686 | Received 03 Aug 2020, Accepted 15 Mar 2021, Published online: 12 Apr 2021
 

Abstract

This work proposes a Machine Learning (ML) approach for the analysis and classification of Ground Penetrating Radar (GPR) given a limited number of B-scan images. Specifically, we consider both a custom Convolutional Neural Network (CNN) and a wellestablished Deep Learning (DL) architecture, DenseNet, that is opportunely scaled down to take into account the small dataset. Those networks are then employed to classify B-scan simulations from buried cylinders in order to retrieve the host media permittivity, the cylinder depth respect to surface, and cylinders radius. A prediction based on the mean-square error (MSE) is applied. The main aim of the proposed work is to test the applicability of a scaled-down version of DenseNet architecture to the analysis of B-scan images and compare the performance respect to a classical CNN. The architecture chosen has shown interesting results in retrieving information from a limited data set. Limitations of the considered approach are also discussed.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.