191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tunable nonreciprocal transmission based on non-Hermitian optical system with magnetic optical materials in a one-dimensional multilayer structure

, , , , &
Pages 2104-2114 | Received 24 Aug 2021, Accepted 27 Mar 2022, Published online: 11 Apr 2022
 

Abstract

In this study, a one-dimensional composite structure composed of a PT-symmetric system and magnetic optical (MO) materials is designed. The nonreciprocal propagation of a one-dimensional multilayer structure is investigated both theoretically and numerically based on the transfer matrix theory. Different from the single nonreciprocal frequency in the parity-time (PT) system, two adjacent band gaps are changed into a pair of nonreciprocal bands under the effect of MO materials and a PT system above the PT exceptional point, and extraordinary transmissions are inspired in some nonreciprocal frequencies. At the same time, the nonreciprocal propagation bands can be tuned based on the different choices of external magnetic field directions. Furthermore, with an increase in the gain/loss factor, the two nonreciprocal band gaps both disappear and form two bands with an extraordinary transmission at certain frequencies. Such peculiar properties in the composite structure may have broad potential applications in communication and integration devices.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.