171
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design of a 2D photonic crystal biosensor using X-shape ring resonator based on Graphene Oxide (GO) for detection of blood components

& ORCID Icon
Pages 2401-2418 | Received 25 Jul 2021, Accepted 17 May 2022, Published online: 30 May 2022
 

Abstract

Recent advances in photonic devices lead researches to be interested in designing all-optical biosensors as new alternatives to large laboratories. In this work, a two- dimensional photonic crystal biosensor based on Graphene Oxide (GO) is developed. The biosensing mechanism is based on the resonance wavelength shift due to refractive index changes of different blood components. The PhC waveguide is designed with an X-shape ring resonator and a hexagonal lattice of (GO) rods in the air background. In the proposed structure, the array of dielectric rods are with a total size of 21.4mm ×16.5 mm. For the optimized structure, the best calculated values of sensitivity (S), quality factor (Q), full width half maximum (FWHM), figure of merit (FOM), and transmission efficiency (TE) are 375 nm/RIU, 14665.8, 0.14nm, 2500 RIU-1, and 99.8% respectively. The important features of this biosensor are excellent FOM, acceptable sensitivity, and high transmission efficiency compared to other studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.