264
Views
6
CrossRef citations to date
0
Altmetric
Articles

An analytical approach for local buckling analysis of initially delaminated composite thin-walled columns with open and closed sections

, & ORCID Icon
Pages 85-105 | Received 04 Jan 2016, Accepted 30 Oct 2016, Published online: 18 Nov 2016
 

Abstract

Local buckling of intact thin-walled columns is generally performed by modeling the wall segments as long plates and by assuming that edges common to two or more plates remain straight. Thus, the buckling load can be determined by considering the wall segments as individual plates rotationally restrained by the adjacent wall segments. This technique is combined with plate theories as a new analytical method to predict the buckling load of an initially delaminated column with any arbitrary sections (open or closed). First, moments at the rotationally restrained edges of delaminated segment (web or flange) are obtained from the curvature and stiffness of the adjacent laminates. Then, the strain energy of this delaminated segment with distributed moment at edges is calculated based on the first-order shear deformation theory. Using the principal of minimum potential energy, the governing equations are obtained and solved by the Rayleigh–Ritz approximation technique. Results of the present approach are compared with three-dimensional finite-element results obtained from eigenvalue buckling analysis in ANSYS software for both box- and channel-section columns with cross-ply and angle-ply stacking sequences. Finally, the effects of delamination size and location are investigated on the buckling loads.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.