317
Views
4
CrossRef citations to date
0
Altmetric
Articles

Matrix crack evolution in multi-directional composite laminates considering thickness effects

ORCID Icon, &
Pages 541-560 | Received 30 Jun 2016, Accepted 06 May 2017, Published online: 04 Dec 2017
 

Abstract

A probabilistic strength-based predictive model for matrix crack evolution in a multi-directional (MD) composite laminate considering thickness effect has been presented in the current work. Weibull distribution has been assumed for the in situ ply strength variation commonly observed in polymer composite laminates. The statistical parameters have been estimated from a master laminate. The crack density evolution has been simulated for cross-ply laminates containing varying thicknesses of and plies. The crack density evolution and associated stiffness degradation predictions have been compared with existing experimental values. The model has been extended to MD laminate containing plies of varying thicknesses to estimate the stiffness degradation under in-plane loading. The bounds on the stiffness have also been estimated. Good correlation is found to exist between the experimental data and simulation predictions.

Notes

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.