446
Views
8
CrossRef citations to date
0
Altmetric
Articles

Novel optimization method of single square FSS impinged and cascaded radar absorbing composites

, &
Pages 297-307 | Received 30 Dec 2016, Accepted 26 Sep 2017, Published online: 30 Nov 2017
 

Abstract

It is well known that radar absorbing potentiality of existing magneto-dielectric composites can be significantly enhanced by the application of frequency selective surface (FSS) and cascaded electromagnetic (EM) structures. But the optimization of such complex EM structures and validation of the adopted optimization strategy is still a very challenging task for the researchers. Therefore, in this study, an effective effort has been made for the optimization and the corresponding validation for Single Square FSS (SS-FSS) impinged and cascaded radar wave absorbers using advanced computational EM software’s like FEldberechnung fur Korper mit beliebiger Oberflache – a German acronym (FEKO) and high frequency structure simulator (HFSS). In addition, a critical analysis of dielectric constant (ε′) has been carried out to select the best combination of composites for the development of efficient radar wave absorbers. A comparison between optimized and simulated results have been carried out to examine the effect of advanced EM approaches over reflection loss (RL) characteristics of composite radar absorbing materials (CRAMs). A rapid change in radar absorption properties of composites has been observed after the application of SSFSS and cascading. A SS-FSS impinged composite has been found to provide a wide absorption bandwidth of 3.6 GHz at X-band. A cascaded absorber having layer thickness 1.8 mm provides a peak RL of −42.6 dB at 10.6 GHz with an absorption bandwidth of 2.5 GHz. The strong agreement between mathematical model, HFSS and FEKO results clearly reflects the efficiency of adopted approach for distinct practical EM applications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.